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Ant-inspired sorting by robots:
the importance of initial clustering

Chris Melhuish1,*, Ana B. Sendova-Franks1,2, Sam Scholes1, Ian Horsfield1

and Fred Welsby1

1Intelligent Autonomous Systems Lab, and 2School of Mathematical Sciences,
University of the West of England, Frenchay Campus, Coldharbour Lane,

Frenchay, Bristol BS16 1QY, UK

For engineers the prospect of scalable collective robot systems is very appealing. Such
systems typically adopt a decentralized approach in their control and coordination
mechanism, which employs local sensing and action as well as limited communication.
Under these constraints and informed by research on Temnothorax ants, two puck sorting
algorithms were tested in a combination of simulation and with real robots. Both algorithms
employed puck density as a cue. Only the overall local density, irrespective of puck type, was
found to be required which offers the prospect for a more simple mechanism than had been
previously considered. For one algorithm, this density cue was used both for picking up and
dropping items and is, therefore, referred to as the ‘double density’ algorithm (DD). In the
second algorithm, density was used as a cue only for picking up. Depositing an item was
governed by the distance travelled which was specific to the type of item being carried. This
was referred to as the ‘single density’ algorithm (SD). Unlike the DD it was found that, for the
SD, the clustering of items is a necessary pre-condition for sorting. Results from ant
experiments also showed that sorting is carried out in two phases: a primary clustering
episode followed by a spacing phase. This strongly suggests that clustering may also be a
precondition for spacing in ants.

Keywords: puck sorting; brood sorting; density cue; ant; robot
1. INTRODUCTION

For engineers the prospect of scaleable collective robot
systems is very attractive. Typically, such systems
adopt a decentralized approach in their control and
coordination mechanism which employs local sensing
and action as well as limited communication (e.g.
Camazine et al. 2001). It is interesting for engineers
and roboticists to see how far this approach can be
taken—how minimalist can such systems be? With the
caveat that social insects, viewed individually and
particularly as a collective, are far from simple, they do
offer inspiration as they represent an existence proof
that decentralized systems can be adaptive, homo-
geneous and exhibit intelligent behaviour. Such
systems can employ radically different mechanisms
compared to those often used in conventional artificial
intelligence.

Inspired by observations and experimental evidence
on ants, the focus of this study is on object sorting in
groups of both simulated and real robots. Experimental
evidence shows that ants such as Temnothorax
(formerly Leptothorax) sort their brood in two phases
(Sendova-Franks et al. 2004). Thus, during colony
migration, brood is carried to the new nest and placed
orrespondence (chris.melhuish@uwe.ac.uk).
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in a cluster. When ants cease to bring in new brood,
they start to space out the different brood items into
characteristic ‘annular’ patterns in which brood of
different types tend to belong to a particular annulus.
For each brood type a characteristic spacing (density)
is seen which is likely to be associated with different
tending requirements (Franks & Sendova-Franks
1992). In the clustering phase the choice of whether
to pick up or put down a brood item is probably based
on the density of other items in the vicinity (Sendova-
Franks et al. 2004). This is in stark contrast to the
ants’ behaviour during the ‘spacing’ phase, when the
ants’ movements of the brood can be described as a
differential diffusion process. Brood items are picked up
if they are packed too densely and dropped after being
moved a consistent and brood specific, Euclidean
distance from the brood pile (Sendova-Franks et al.
2004). Through this process of diffusion, brood items
are sorted into order with the smallest in the centre
and the largest on the outside of the pattern (Franks &
Sendova-Franks 1992; Sendova-Franks & Franks 1995;
Sendova-Franks et al. 2004).

Encouraged by our current understanding of the
biology we carried out experiments with different
algorithms for real and simulated robots in the hope
that results from these experiments would feed back
into further elucidation of the underlying biological
J. R. Soc. Interface (2006) 3, 235–242
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Figure 1. A frame of simulated robots sorting pucks. The type
1 pucks (black) are clustered towards the middle of the
structure. Type 2 pucks (dotted grey) are further outward and
type 3 (dark grey) are near the periphery of the structure.
Each of the six simulated agents is shown inside its circular
sensory field. The position of the scoop is also denoted by the
‘horns’.
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mechanisms employed by the ants. Two types of
‘artificial’ sorting have been described in the literature;
namely, patch sorting and annular sorting (Melhuish
et al. 1998; Wilson et al. 2002). Both types segregate
objects of different type into ‘cohesive’ groups, while
the geometrical configurations are different. Patch
sorting creates ‘clumps’ of each object type whereas in
annular sorting items are arranged into rings or parts of
rings of each type of item with characteristic spacing of
items within each ring.

Patch sorting has not only been accomplished in
simulation and with real robots using density of the
different object types as in the case of Deneubourg et al.
(1991) but also by comparing the ‘degree of similarity’
between different types of object using simulation and
real robots (Melhuish et al. 2001). Wilson et al. (2004)
created an algorithm which was a continuation of
Melhuish et al.’s (1998) two colour annular sorting
which did not employ density but did use differential
pull-back distances for different object types. By
discriminating between three puck types, the robots
could drop the first type of object on colliding with
another puck, drop the second object type after pulling
back a short distance and drop the third puck type after
pulling back a further distance.

Wilson et al.’s (2004) algorithm produced structures
that were close to the annular sorting observed in
Temnothorax ant colonies (Franks & Sendova-Franks
1992). In contrast with the density based mechanism
employed in this paper, the algorithm employed ‘leaky
integrators’ to reset behaviours and effect behaviour
transitions. It was found that the resulting structure
became less annular when the robots attempted to sort
more than three objects (Wilson 2003).

In the case of ants carrying out annular sorting of
brood the experimental evidence suggests the use of a
density cue (Sendova-Franks et al. 2004), and we confine
ourselves to this approach in this study. Furthermore,
experimental evidence supports the idea that ants use
brood density to pick up a brood item but not to put it
down and this is in contrast to other sorting algorithms
where density for both picking up and putting down
brood is employed (Deneubourg et al. 1991).

In this paper we explore two density based sorting
algorithms: (1) a sorting algorithm which employs
density for picking up and putting down an item—we
refer to this as the ‘double density’ algorithm (DD); and
(2) an algorithm which only uses density for picking up
an object—we refer to this as the ‘single density’
algorithm (SD). For our experiments it was necessary
for a simulated or real robot to be able to tell which item
type it was dealing with as, depending on the algorithm,
items were moved different distances according to their
item type. In our previous experiments, a robot could
tell which puck type it was picking up or putting down
by the reflectivity of the surface of the puck (Melhuish
et al. 1998). In this study we use colour rather than
reflectivity to discriminate between puck types. The
simple camera we used for this system is described later.

Three different ‘colours’ of objects were employed
and these three types of item are later referred to as
types 1–3 (figure 1). All pucks were the same size and
therefore, we did not attempt to employ differences in
J. R. Soc. Interface (2006)
size or weight as possible discrimination cues. However,
importantly, unlike Deneubourg et al.’s (1991)
approach, our SD and DD algorithms do not rely on
the density measurement of these different object types
(for example the density of only type 2 objects) but
employ a measure of the density of all objects,
irrespective of type, within its sensing range—an
‘omni-density’ cue.

We examine the SD algorithm in simulation and
with robots and the DD algorithm in simulation to
explore further why the ants use a different process in
each phase of sorting. After initial trials we did not use
the DD algorithm in robots. The requirement to
constantly monitor density while transporting objects
was not a pragmatic choice, as updating density values
could only be made at a relatively low rate. This issue
and its possible implications to biological mechanisms
and behaviour are discussed later.

Each algorithm was tested either with the pucks
initially randomly distributed or with the pucks in a
central cluster. In this way we were able to explore the
utility of the algorithms and from our results speculate
on why ants might have evolved to employ a SD-like
algorithm with its concomitant constraint of requiring
items to be clustered together as an initial condition.
2. METHODS

2.1. Simulation implementation details

The experiment with each initial condition was
replicated 50 times. Forty-five pucks were distributed
equally between three object types. Six simulated
robots with a circular sensory area with a radius of
30 units (pixels) were used in each replicate. The
density of pucks is simply the number of pucks within
that sensory area. The diameter of the simulated arena
was 338 units (pixels). Robot step lengths, distance to
centroid of the type 1 items and dropping distances are
given in these units. All experiments were run for

http://rsif.royalsocietypublishing.org/


Figure 2. The ‘double density’ or DD algorithm. The values of the density ranges for simulation are set out in table 1.

Ant-inspired sorting by robots C. Melhuish and others 237

 rsif.royalsocietypublishing.orgDownloaded from 
500 000 time-steps, the unit during which each robot
moves one pixel. The simulator was based on a U-bot
robot simulator (Wilson 2003; Wilson et al. 2004) and
was further modified to reflect the behaviour observed
in the ants (Scholes 2005; Scholes et al. 2004). The code
was written using an object-oriented Java platform
where all simulated robots were identical but treated as
individual entities. In the simulation, agents could push
coloured pucks, ‘captured’ in a front-mounted scoop,
around a two-dimensional arena, the area of which
could be specified by the experimenter (figure 1). Each
simulated robot also had forward-facing proximity
detection sensors mimicking the infra-red sensors of
the real robots.

Simulated robots and pucks could travel anywhere
inside the arena as long as the space was not already
occupied by another agent or a puck. If an agent
partially hit a puck, the puck would either be knocked
into the simulated robot’s puck scoop or knocked aside
with equal probability. If pucks were pushed together,
they would move in accordance with the rules of
conservation and momentum associated with ‘billiard
balls’. This involved a high coefficient of friction as the
pucks represented flat disks rather than spherical balls.
If a robot collided with another simulated robot or a
wall, it would turn through a random angle and move
away.

Unhindered simulated robots always travelled in
straight lines. After each iteration of the program, the
simulated robots moved one pixel. This constituted a
‘robot step’. Each simulated robot could calculate the
density of pucks within a circular sensory field (figure 1)
J. R. Soc. Interface (2006)
and choose to pick up (as in the case of SD and DD
algorithms) or put down (for the DD algorithm only) a
puck that it collided with based on this information.
When the simulated robots had moved 500 000 steps,
the program would terminate and calculate the
distance to the centroid of the type 1 items.
2.2. Density algorithms

The first algorithmwas based on the observations of ant
behaviour in the clustering phase (i.e. the first phase of
sorting) whereby the experimental biological results are
consistent with using density for picking up and
depositing brood (Sendova-Franks et al. 2004). Under
this DD algorithm, an agent will pick up an item when
it is within a specified density range and move it until it
is inside a second density range before dropping it
(density two), without employing any ‘distance tra-
velled’ information. For type 1 items a low density is
required to initiate pick up since a high density would
imply that this type of item is already well ‘packed’.
A suitably higher density is chosen to initiate deposition
since type 1 should only be added to at least partially
packed structures. Type 3 items, which are required to
be at the outside of the sorted structure, are picked up if
they are near another object and put down when they
are the only puck in the sensory range. Type 2 objects
are ‘intermediate’ and therefore picked up when either
the density is too low or too high and deposited when
the density is within a range where the density is not
too low or too high. The DD algorithm for spacing was

http://rsif.royalsocietypublishing.org/


Table 1. Threshold densities for picking up and dropping
pucks for the simulated robots using the DD algorithm.

spacing type 1 type 2 type 3

pick up density D!7 D!7 or DO13 DO1
drop density DO13 DO6 or D!14 D!1

238 Ant-inspired sorting by robots C. Melhuish and others

 rsif.royalsocietypublishing.orgDownloaded from 
implemented using the algorithm shown in figure 2
(table 1).

The second algorithm was based on the observations
of ant behaviour during spacing which constitutes the
second phase of sorting, whereby the biological results
are consistent with an algorithm which employs
dropping an item after moving it a distance based on
the type of item and a density cue for pick up
(Sendova-Franks et al. 2004). This SD algorithm
assumed that an agent will pick up an object if the
density of the objects around it is not within a specified
threshold (the only density cue) and used the same
principles for picking up an item as the DD algorithm
described above. Items were dropped after first moving
them a pre-specified distance. The exact distance the
agent moves before releasing the object is dependent on
the type of object being carried. The relative magni-
tudes of the distances are based on those used by the
ants (Sendova-Franks et al. 2004), but have been tuned
to fit the area of the arena. The SD algorithm for
spacing was implemented using the algorithm shown in
figure 3.
2.3. Robot implementation details

The experiment with real robots comprised of five
minimalist, autonomous U-bots, programmed using C.
Each robot was fitted with a ‘CMUcam’ camera system
for measuring puck density (figure 4). The use of the
camera system highlights an important difference
between the ants and the robots in that the ants appear
to use antennae to sense the presence of brood items,
allowing them to sort in total darkness. The real robots
have no antennae to sense the pucks, although these
could have been constructed but would have required
more time and resources. Instead, the short range
sensing capabilities are replicated by the fixed camera
which can discriminate the colour of 256 squares in a
small area (50 cm!50 cm) in front of the robot.
However, the camera system does not use any high
level image processing but simply works using colour
percentages in the visual field. This retains the local
sensing indicative of agents completing a task in a self-
organized manner. Using this simple camera system,
the density component of the ants’ behavioural
algorithm can be incorporated in the robot behavioural
algorithm.

The method the real robots used to calculate the
density of the pucks from the CMUcam image was to
divide the camera’s field of vision into a 16!16 grid
array. Each of the 256 images was assigned a value
dependent on the mean RGB value of the image and
the absolute deviation of the colour found in that
region. The values assigned using simple chrominance
J. R. Soc. Interface (2006)
based rules were red, green, blue and floor, that is, the
item type is recognized by its colour. The colour of the
puck (or floor) held in the robots scoop was associated
with a certain region of the 16!16 grid. If there was no
obstacle but there was a puck present in the robot’s
scoop a grid image was obtained from the camera. The
colour of the puck in the scoop of the robot determined
a pull back action and the distance (table 3). Using the
same principles for picking up and depositing pucks as
described in simulations, densities of pucks were
calculated in terms of the number of coloured (i.e.
non-floor) squares. Type 1 items were left if a robot had
more than 65 coloured squares in its camera array. If
there were less than 65 squares, the puck would be
pulled back 3 cm. Type 2 items were left if there were
between 30 and 65 coloured squares in a robot’s camera
array but were otherwise pulled back 30 cm. Type 3
items were left if there were less than 30 coloured
squares in a robot’s camera array but otherwise pulled
back 100 cm. On completing the whole of the distance,
a robot would drop the puck. A robot would then
proceed forward once again. It should be noted that if
an obstacle was encountered during a pull back
routine, a robot would make a random turn to avoid
the obstacle and complete the set pull back distance.
Each experiment was replicated three times and was
recorded using a time lapse camera set to capture one
frame at 5 min intervals for a total duration of 2 h.
2.4. Experiment details

In simulation we carried out two sets of experiments:
one with the SD algorithm and one with the DD
algorithm. Both algorithms were tested for perform-
ance in the spacing phase of sorting. We used two initial
conditions: (1) pucks distributed randomly over the
whole area of the arena—henceforth referred to as
randomly distributed pucks and (2) pucks distributed
randomly within a packed cluster in the centre of the
arena—henceforth referred to as clustered pucks. The
SD algorithm was also validated with real robots under
both initial conditions.

After each algorithm had run for a pre-specified
length of time, we logged the position of each puck in
the final structure in terms of the x - and y -coordinates
of its centre. Then we calculated the distance between
the centre of each puck and the centroid of the
structure, defined as the mean x - and y -coordinates of
all type 1 items. For each experimental replicate the
median distances to the centroid, for each puck type
and under each starting condition, were analysed using
a two-way ANOVA implemented with a General Linear
Model (GLM) in the statistical package Minitab
(http://www.minitab.com).

For robots, as in the case of the simulation, trials
were also conducted for two categories of initial
distribution of 45 pucks (15 of each type). In the first
case with clustered and the second with randomly
distributed pucks. The pucks consisted of three puck
types each with 15 pucks and the experiment with this
initial condition was replicated three times.

http://www.minitab.com
http://rsif.royalsocietypublishing.org/


Figure 3. The ’single density’ or SD algorithm. The values of the density ranges for simulation and robots are set out in tables 2
and 3, respectively.

Table 2. Density ranges for picking up items of each puck type
in the SD algorithm for simulated robots. (The distances
which each type of item are moved before they are dropped
are shown. All distances are in ‘arena units’. The diameter of
the arena is 338 units (pixels). All densities refer to the
number of pucks or part pucks within the sensory range.)

parameter type 1 type 2 type 3

pick up density D!7 D!7 or DO13 DO1
drop distances 20 40 80

Figure 4. One of the U-bots with the camera system for the
measurement of puck density.
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3. RESULTS

3.1. The SD algorithm
3.1.1. Simulation results. Effect of initial clustered puck
distribution in simulation. The simulated robots using
the SD algorithm created a well clustered group of type
1 pucks with some outliers (figure 5a). The type 3 items
were furthest toward the periphery and although the
type 2 items were spread at a similar distance from the
centroid, they had a significant proportion of their
number between the central cluster of type 1 items and
the most peripheral type 3 items. This shows that the
robots were able to sort the pucks successfully when
they started as a cluster.

Effect of initial randomly distributed pucks in
simulation. With the pucks randomly distributed at
the start of each trial, simulated robots using the SD
algorithm were unable to sort the pucks effectively
within 500 000 robot movements (figure 5b). The type 1
items were still randomly distributed and the type 2
J. R. Soc. Interface (2006)
items were on average further from the centroid than
the type 3 items.

Comparison between the two starting conditions.
There is an effect of starting condition on the forma-
tion of the final structure (GLM, F1,4494Z222.82,
p!0.0001). There is an effect of item type (F2,4494Z
1036.37, p!0.0001) and interaction between the two
factors (F2,4494Z161.54, p!0.0001). When the pucks
start clustered, the type 1 items end up more clustered
than when the pucks start randomly (Tukey test,
TZ21.59, p!0.0001). The type 2 items in the clustered
start condition finish separated from, but closer to, the
centre than the type 2 items in the random start

http://rsif.royalsocietypublishing.org/
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across the box is the median. The ‘whiskers’ are drawn to the
nearest value within 1.5 times the interquartile range. The
figure is arranged showing the starting displacements (1 start,
2 start and 3 start) followed by the final displacements for
each of the experiments (1 end, 2 end and 3 end).
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Figure 6. Comparison of the change in distance of each puck
type from the centroid when the real robots were sorting using
the SD algorithm when the pucks started (a) clustered and
(b) randomly distributed in the arena. The robots were
stopped after 2 h.

Table 3. Thresholds for picking up and dropping distances for
the robots using the SD algorithm. (The density values refer
to the number of squares containing colour in a 256 square
grid, picked up by a camera.)

spacing type 1 type 2 type 3

pick up density D!65 D!30 or DO65 DO30
drop distances 3 cm 30 cm 100 cm
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condition (Tukey test, TZ8.08, p!0.0001). The
difference between the two conditions is much less
pronounced than with the type 1 items. More type 3
items finish on the periphery of the structure when
the pucks begin clustered than when the pucks
begin randomly distributed (Tukey test, TZK3.81,
pZ0.0019). This suggests that the algorithm will only
work if the pucks start in a cluster. This is confirmed by
comparing the average final structure created using the
SD algorithm when the pucks start clustered and when
the pucks start randomly spread over the arena surface.
3.1.2. Robot results. Effect of initial clustered pucks
distribution with robots. The robots successfully sorted
the pucks. The type 1 items were well clustered with the
type 2 items further from the centroid and the type 3
items around the periphery of the structure (figure 6a).

Effect of initial randomly distributed pucks with
robots. The real robots were unable to sort the pucks
effectively after 2 h of sorting. The type 1 items were
not clustered and ended up pushed further to the
J. R. Soc. Interface (2006)
periphery of the arena thanwhen they started (figure 6b).
The type 2 and type 3 items were also left around the
periphery of the arena and were not distributed
differently to one another.

Comparison between the two starting conditions. As
with the simulation, there is an effect of starting
condition on the formation of the final structure
(GLM, F1,257Z34.11, p!0.0001). There is also an
effect of object type (F2,257Z33.89, p!0.0001) and
interaction between the two factors (F2,257Z15.11,
p!0.0001). When the pucks start clustered, the type 1
items end up more clustered than when the pucks start
randomly (Tukey test, TZ7.766, p!0.0001). The type
2 items do not occupy significantly different positions
in the clustered start condition than in the random
start condition (Tukey test, TZ2.114, pZ0.2799).
Likewise, the type 3 items do not occupy significantly
different positions in the clustered start condition than
in the random start condition (Tukey test, TZ0.276,
pZ0.999). The similarity between the type 2 and type
3 pucks in the two conditions is most likely due to the
pucks being pushed against the arena wall. The robots
are not sorting under the initial conditions with a
random distribution of pucks. This is shown by
comparing the distances of each puck type from the
centroid in the condition where the pucks started
randomly distributed. At the end of the experiment,
the type 1 pucks are not distributed differently to the
type 2 pucks (Tukey test, TZ0.9726, pZ0.9267) or
the type 3 pucks (Tukey test, TZ2.0072, pZ0.3381).
There is also no difference in the distribution of the
type 2 and the type 3 pucks (Tukey test, TZ0.117,
pZ0.9003).
3.2. The DD algorithm
3.2.1. Simulation results. Effect of initial clustered
distribution in simulation. In simulation, robots using
the DD algorithm created ‘near-perfect’ distances to

http://rsif.royalsocietypublishing.org/
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the centroid of all puck types (figure 7a). There are
outliers but the type 1 items are clustered and
surrounded by a band of type 2 items, ringed by a
halo of type 3 items. This is an excellent demonstration
of the intended structure.

Effect of initial random distribution in simulation. At
the end of the experiments the type 1 items were closer
to the centre than the type 2 items and the type 2 items
are closer to the centre than the type 3 items. The
results show that the DD algorithm can successfully
sort pucks when they start randomly in the arena
(figure 7b).

Comparison between the two starting conditions.
There was no effect of the starting conditions when
using the DD algorithm. At the end of the experiments,
type 1 items ended up at the same distance from the
centre in both conditions (Tukey test, TZ2.793,
pZ0.0585), type 2 items further out towards the
periphery but equally so in both start conditions
(Tukey test, TZ0.956, pZ0.9315) and type 3 items
ended up furthest from the centre but at equivalent
distances in each condition (Tukey test, TZ1.49,
pZ0.6715).
3.3. Comparison between the SD and DD
algorithms

After 50 000 time steps, the robots using the ‘double
density’ algorithm had created a denser cluster of pucks
than when they used the ‘single density’ algorithm.
Pucks of all types were closer to the centroid in the
replicates when the ‘double density’ algorithm was
used.
4. CONCLUSIONS

Two algorithms which employed puck density as a cue
were compared. Unlike previous work, such as reported
by Deneubourg et al. (1991), the density of different
types of object was not used and instead the density of
all pucks within the local sensing range was employed.
J. R. Soc. Interface (2006)
Although we have currently not employed different
sizes of items we have used colour rather than size or
weight to differentiate between types of item. Further-
more, as we are using the notion of total density of
sensed items, we therefore speculate that this method
could still be used with items of different sizes. Such
ideas clearly require further experimentation.We argue
that using all objects within the sensory field to
generate a measurement of density is more minimalist
as it requires less sophisticated sensing and processing
than if the density of each item type was assessed
separately. The DD algorithm employed density as a
cue for a robot to pick up and also deposit a puck. In
contrast, the SD algorithm used density as a cue for
pick up only. It used a distance ‘mechanism’ to execute
the deposition of a puck. We found that the SD
algorithm could sort three different types of puck
provided that all the pucks were clustered together to
begin with. The DD algorithm, however, did not need
the pucks to be clustered in the beginning and could
sort effectively whether the pucks were randomly
distributed or organized into a cluster at the start of
each trial.

Do these findings help us further our understanding
of how ants go about sorting? Ants do not appear to
employ density as a cue on both pick up and deposition
(as in the case of the DD algorithm), that is, their
behaviour is consistent with employing something more
akin to the SD algorithm in which the clustering of
objects into a single cluster precedes spacing (Sendova-
Franks et al. 2004). Our results show that the SD
algorithm is more sensitive to the initial distribution of
the objects to be sorted, that is, a single cluster is a
necessary start condition. Furthermore, we have
suggested that the dropping distances used in the SD
algorithm, which relate to the duration and trajectory
of the moved object, is consistent with using weight as a
cue for determining brood-specific dropping distances
in ants (Sendova-Franks et al. 2004). In other words, in
terms of time, ants move heavy items in ‘straight’ lines
and drop them quickly whereas light items are carried
for much longer but are taken via a much more tortuous
path i.e. a shorter Euclidean distance. In this way an
ant carries a lighter item on a longer path but since the
path is very sinuous she ends up dropping the item at a
shorter Euclidean distance than would be the case for a
heavy item which she carries on a shorter but
‘straighter’ path. Importantly, in terms of distance
travelled, the difference in the way each type of item is
carried means that they are dropped at increasing
Euclidean distances from where they started as the
weight of the items increases.

It is also interesting to speculate why ants would not
use the DD approach which could possibly, at first
sight, be less time consuming and energetically more
efficient. We propose the following hypotheses: (1)
constantly monitoring density while carrying brood
could be difficult, since brood items could obstruct
antennae movement; (2) the speed at which an
individual ant could perform a density measurement
could, in some or even all ants, introduce a temporal lag
leading to a loss of ‘synchronization’; (3) with the above
two points in mind, the employment of a SDmechanism
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which does not require the extra sensing and processing
demands to discriminate between different densities of
different object types would make evolutionary sense;
and (4) using the SD approach could confer adaptive
flexibility with respect to the number of items sorted—
it does not matter, for example, if brood items were lost
during emigration to a new nest site. Furthermore, it
could be argued that if ants were attempting to sort at
the same time as their co-workers were bringing more
brood into the nest, then this would be disruptive and
hinder spacing. If the cue to switch from the clustering
phase to the spacing phase is governed by stability of
density, then an incomplete cluster would be (since
brood is constantly being dropped nearby) sensed as
having more density variation in time than a completed
cluster. If the cue to switch behaviour from clustering to
spacing is based on the stability of the density cue, then
employing the SD algorithm would make sense since it
would facilitate cleaner switching between behaviours
and result in better spacing.

Alternatively if constantly monitoring density while
transporting objects does not present problems in terms
of processing demands, sophistication of sensing and
budget, then the DD algorithm is an attractive
mechanism. For this study our density measuring
system in the real robots operated at approximately
0.2 Hz and thus the constant monitoring of density
required by theDDalgorithmwas not a practical option.
Of course for simulated robots the constraints may be
less severe but the same problems of processing demands
might reveal themselves as the simulation scales.

Although sorting, as in the case of patch sorting,
does not necessarily have to be carried out using density
as a cue (Wilson et al. 2004) researchers such as
Deneubourg et al. (1991) have put forward a mechan-
ism which relies on the perception of density for cues to
pick up and put down the items being sorted. We have
demonstrated that, for the SD algorithm, density can
be used only on pick up and thus constant density
measurement is unnecessary. To a large degree this fits
the biological evidence, but interestingly, ants will
move an object if the density is too high and do not
appear to move an object when the density is low
(Sendova-Franks et al. 2004). In order to make our
algorithm work we were required to include a lower
density threshold and further work is required to
explore this difference.

From the engineer’s perspective a device which is
simple is likely to be more robust than a more complex
one since there is less to go wrong. It is also likely to be
cheaper to build and easier to mass produce which is
naturally attractive for those considering the building
of swarm systems in which decentralization is the key to
scalability. Robotics research in this field also offers
ideas and questions to ant researchers. Our work
demonstrates that clustering is a necessary condition
for successful sorting in simulated or real robots that
use the SD algorithm. This suggests that ants may
employ a similar mechanism. Future work will need to
test this hypothesis with further experiments and
J. R. Soc. Interface (2006)
examination of ant behaviour. Future simulation and
robot experiments will also need to take into account
such factors as morphological differences between
robots and ants as well as means of locomotion.

We gratefully acknowledge the EPSRC and, in particular, the
Life Science Interface Programme for supporting this
research. We would also like to thank the reviewers for their
insightful and useful comments.
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